NORTH HOPKINS WATER SUPPLY CORPORATION 2024 ANNUAL DRINKING WATER QUALITY REPORT CONSUMER CONFIDENCE REPORT (CCR)

ANNUAL WATER QUALITY REPORT for the period of January 1, 2024 - December 31, 2024.

Public Water System ID Number 1120017

This report is intended to provide you with important information about your drinking water and the efforts made by the water system to provide safe drinking water. For more information, contact Leeo Casey Janway, Manager, at 903-945-2619.

Este reporte incluye información importante sobre el agua para tomar. Para asistencia en español, favor de llamar al teléfono (903) 945-2619.

Special Notice

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's office.

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer, those who have undergone organ transplants, those who are undergoing treatment with steroids, and people with HIV/AIDS or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline at (800)426-4791.

In 2024, our water department distributed 174,002,300 gallons of water to our customers. North Hopkins Water Supply Corporation purchases pre-treated surface water from the City of Sulphur Springs. Our water comes from Cooper Lake (Jim Chapman Lake) with back up water supply from Lake Sulphur Springs. Your water is treated using disinfection and filtration to remove harmful contaminants that may come from source water.

INFORMATION ON SOURCES OF WATER

The sources of drinking water include rivers, lakes, streams, ponds, reservoirs, springs and wells.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. To make sure that your tap water is safe, EPA prescribes regulations that limit the amounts of certain contaminants allowed in water after its treatment, when it is delivered by public water systems. FDA regulations establish limits for the contaminants in bottled water which must provide the same protection for the public health. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline at (800)426-4791.

Contaminants that may be present in source water before it is treated include:

- Microbial contaminants, such as viruses and bacteria, may come from waste water treatment plants, septic systems, agricultural livestock operations and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production mining or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential use.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff and septic systems.
- Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

INFORMATION ABOUT SECONDARY CONTAMINANTS

Many constituents (such as calcium, sodium or iron) which are often found in drinking water, can cause taste, color and odor problems. The taste and odor constituents are called secondary constituents and are regulated by the State of Texas, not the EPA. These constituents are not causes for health concerns. Therefore, secondaries are not required to be reported in this document, but they may greatly affect the appearance and taste of your water.

Public Participation Opportunities

Date: Board Meetings 4th Thursday of the Month
Time: 7:00 p.m.
Place: Office - 9364 Texas Highway 19 North
Sulphur Springs, Texas 75482 Phone: 903-945-2619

To learn about future public meetings (concerning your drinking water), or to request to schedule one, please call us.

Information About Source Water Assessments

A Source Water Susceptibility Assessment for your drinking water source(s) is available by the Texas Commission on Environmental Quality. The information contained in the assessment allows focus on source water protection strategies.

For more information about your sources of water, please refer to the Source Water Assessment Viewer available at the following URL: <u>https://www.tceq.texas.gov/gis/swaview.</u>

This information describes the susceptibility and types of constituents that may come into contact with our drinking water source based on human activities and natural conditions. The information contained in the assessment allows us to focus on our source water protection strategies.

Further details about sources of source water assessments are available in Drinking Water Watch at the following URL: <u>http://dww2.tceq.texas,gov/DWW/</u>

	Coliform Bacteria	2024				
Year	E. Coli Maximum Contaminant Level Goal	Total Coliform Maximum Contaminant Level	Highest Number of Coliform Positive	Number of E. Coli Positive Results	Violation	Likely Source of contamination
2024	0	2 or more samples in any single month	0	0	Ν	Naturally present in the environment.

Note: Reported monthly test found no fecal coliform bacteria. Coliform are bacteria that are naturally present in the environment and are used as an indicator that other potentially harmful, waterborne pathogens may be present.

Maximum Residual Disinfectant Level

	Average Level	Min Level	Max Level	MRDL	MRDLG	Units	Source of chemical
2024 Chlorine (chloramines)	2.138	.50	3.97	4.0	4.0	ppm	Water additives are used to control microbes.

Radioactive Contaminants -2023

Contaminant	Level	MCL	MCLG	Units	Violation	Likely Source
						of
						Contamination
Combined	1.5	5	0	pCi/L	Ν	Erosion of
Radium						natural
226/228						deposits.

Radioactive contaminant testing schedule is once every 6 years.

Lead a	ind Copp	per					
Lead & Copper	Year	Action Level Goal (AL)	90 _{th} Percentile	# Sites Over AL	Units	Violation	Likely Source of Contamination
Copper	2022	1.3	.0508	0/20	mg/L	Ν	Erosion of natural deposits; leaching from wood preservatives, corrosion of household plumbing systems
Lead	2022	.015	0	0/20	mg/L	Ν	Corrosion of household plumbing systems; erosion of natural deposits

Required Additional Health Information for Lead:

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. This water supply is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (800)426-4791 or at http://www.epa.gov/safewater/lead.

Customers can access the lead service line inventory at the office located at 9364 Texas Highway 19 North, Sulphur Springs, Texas 75482.

Year	Disinfection by-product	Average	Range	MCL	Units	Violation	Likely Source of Contamination
2024	Chlorite	0.056	0-0.210	1.000	ppm	Ν	By-product of drinking water disinfection
2024	Total Halo acetic Acids (HAA5)	27.6	18.4-40.6	60	ppb	Ν	By-product of drinking water chlorination

Disinfection Byproducts

2024	Total Trihalomethanes (TTHM)	39.5	22.2-61.3	80	ppb	N	By product of drinking water chlorination
------	---------------------------------	------	-----------	----	-----	---	---

Turbidity

Year		Level (Treatment Technique)	Level Detected	Violation	Likely Source of Contamination
2024	Highest single measurement	1.0 NTU	0.20	N	Soil runoff
2024	Lowest monthly % meeting limit	<0.3 NTU	100%	Ν	Soil runoff

Information statement: Turbidity is a measurement of the cloudiness of the water caused by suspended particles. It is monitored because it is a good indicator of water quality and the effectiveness of the filtration system and disinfectants.

Synthetic Organic Contaminants

Year	Contaminant	Level Detected	MCL	MCLG	Units	Violation	Likely Source of contamination
2024	Atrazine	0.4	3	3	ppb	Ν	Runoff from herbicide used on row crops
2024	Metolachlor	0.4	700		ppb	N	Runoff from herbicide used on row crops

Atrazine Advisory: Some people who drink water containing atrazine well in excess of MCL over many years could experience problems with their cardiovascular system or reproductive difficulties.

Inorganic Contaminants

Year	Contaminant	Level	MCL	MCLG	Units	Violation	Likely Source of contamination
------	-------------	-------	-----	------	-------	-----------	--------------------------------

2024	Fluoride	0.40	4	4	ppr	n	N	Erosion of natural deposits; water additive which promotes strong teeth, discharge from fertilizer and aluminum factories.
2024	Cyanide	22.7	200	200	ppł)	N	Discharge from plastic and fertilizer factories. Discharge from steel/metal factories.
2024	Nitrate (measured as Nitrogen)	0.443	10	10	ppr	n	Ν	Runoff from fertilizer use; leaching from septic tanks, erosion of natural deposits. Nitrate in drinking water at levels above 10 mg/l is a health risk for infants of less than 6 months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant, you should ask advice from your health care provider.
2024	Barium	0.045	2	2	ppr	n	N	Discharge of drilling waste; Discharge from metal refineries; Erosion of natural deposits.
Year	Secondary Cons	stituents	Level Detected		Units	N	Violation	Likely source of contamination
2024	Alkalinity		54.5		ppm	١	N	Erosion of natural deposits
2024	Aluminum		0.05		ppm	١	N	Erosion of natural deposits

2024	Calcium	26.1		ppm	Ν	Erosion of natural deposits
2024	Magnesium	2.46		ppm	Ν	Erosion of natural deposits
2024	Potassium	3.01		ppm	Ν	Erosion of natural deposits
2024	Sodium	18.4		ppm	Ν	Erosion of natural deposits
2024	Chloride	9.1		ppm	Ν	Erosion of natural deposits
2024	Texas Copper	0.0016		ppm	Ν	Erosion of natural deposits
2024	Sulfate	58.7		ppm	Ν	Erosion of natural deposits
2024	Total Dissolved Solids	171		ppm	N	Erosion of natural deposits
2024	Manganese	0.0014		ppm	Ν	Erosion of natural deposits

Volatile Organic Compounds (VOCS)

Year	VOC	Average	Range	Units	Violation	Likely Source of contamination
2024	Chloroform	30.0	17.4-43.8	ppb	Ν	A disinfection by-product
2024	Bromochloroacetic acid	3.8	2.8-4.9	ppb	N	A disinfection by-product
2024	Bromodichloromethane	10.80	6.78-15.2	ppb	Ν	A disinfection by-product
2024	Dibromochloromethane	2.3	1.56-3.43	ppb	Ν	A disinfection by-product
2024	Dichloroacetic Acid	15.6	10.2-21.1	ppb	Ν	A disinfection by-product
2024	Trichloroacetic Acid	9.60	6.1-15.8	ppb	N	A disinfection by-product

2024	Monobromoacetic Acid	1.00	1.00	ppb	Ν	A disinfection by-product.
2024	Monochloroacetic Acid	2.5	1.5-5.3	ppb	Ν	
						A disinfection by-product

Total Organic Carbon (TOC) - 2024

Source	Average Level Detected	Range of Level Detected	Units	Likely Source of Contamination
Source Water	5.81	5.14-9.04	ppm	Naturally present in the environment
Treated Water	3.00	2.68-3.49	ppm	Naturally present in the environment
Removal Ratio	52%	42.2%-61.4%	% removal	Removal ratio required $>=35\%$

Note: Total Organic Carbon has no health effects. The disinfectant can combine with TOC to form disinfection by-products. Disinfection is necessary to ensure that water does not have unacceptable levels of pathogens. Removal ratio is the percent of TOC removed by the treatment process. The percentage of Total Organic Carbon (TOC) removal was measured each month and the system met all TOC removal requirements set, unless a TOC violation is noted in the violations section.

Violations None

TWDB Water Loss Audit

In the water loss audit survey submitted to the Texas Water Development Board for the time period of January 1, 2024 - December 31, 2024, our system lost an estimated 32,610,000 gallons of water.

Terms to Know

The following tables in this report use scientific terms and measures to label/clarify the amounts of different compounds. Below is some explanation of these terms and measures.

Level 1 Assessment	A study of the water system to identify potential problems and determine (if possible) why total coliform bacteria were found.
	comorni bacteria were found.

Level 2 Assessment	A very detailed study of the water system to identify potential problems and determine (if possible) why an E.Coli maximum contaminant level (MCL) violation has occurred and/or why total coliform bacteria were found on multiple occasions.
Maximum Contaminant Level Goal (MCLG)	The level of a contaminant in drinking water below which there is no known or expected health risk. MCLGs allow for a margin of safety.
Maximum Contaminant Level (MCL)	The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
Maximum Residual Disinfectant Level Goal (MRDLG)	The level of a drinking water disinfectant below which there is no known expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
Maximum Residual Disinfectant Level (MRDL)	The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants
Action Level (AL)	The concentration which, if exceeded, triggers treatment of other requirements which a water system must follow.
Treatment Technique (TT)	A required process intended to reduce the level of a contaminant in drinking water.

Abbreviations

Avg	Regulatory compliance with some MCLs are based on running annual average of monthly samples.
MFL	Million fibers per liter (a measure of asbestos)
mrem	Millirems per year (a measure of radiation absorbed by the body)
NTU	Nephelometric Turbidity Units (a measure of turbidity)
pCi/L Picocuries per liter (a measure of radioactivity)	
ppb Micrograms per liter (ug/L) or parts per billion	
ppm Milligrams per liter (mg/L) or parts per million	
	T

ppt	Nanograms per liter (ng/L) or parts per trillion
ppq	Picograms per liter (pg/L) or parts per quadrillion